If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x+x^2-640=0
a = 1; b = 10; c = -640;
Δ = b2-4ac
Δ = 102-4·1·(-640)
Δ = 2660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2660}=\sqrt{4*665}=\sqrt{4}*\sqrt{665}=2\sqrt{665}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{665}}{2*1}=\frac{-10-2\sqrt{665}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{665}}{2*1}=\frac{-10+2\sqrt{665}}{2} $
| 3t-6=0t= | | 2x+4+3+1=90 | | 5a-1=2.5a-4 | | 4(x-8)=-7 | | 5+6a=10a-7 | | x+2x+-5=19 | | 180=10x-40 | | -6(-3u+1)-7u=7(u-1)-5 | | 2x+92=44 | | 5x/2+8=48 | | 9u+26=7(u+6) | | 7(w+4)=4w+1 | | 1/6x=2x-55 | | 3x-9=-2x+1 | | 8+4k=0 | | X.y=45 | | 7-4y=9-5y | | 15=12+5x | | 5(2x-1)=3(4x+3) | | 3x/2+2=12 | | x2−4x=7 | | (26+4)/6=w | | 3/5x-2=1/1/3 | | u/2+15=27 | | 40m+100=50m | | 2(x=6)-x=75 | | 4+5x=32-2x | | 2.3x+8=3.x+3+1 | | 5x²-2=178 | | 3(3x-5)=69 | | 121=6^2+x^2 | | 10x-5=-5x+5-15x |